Age ratings are coming to a platform you most likely use -- from TikTok rolling out content with a maturity rating system to prevent young audiences from seeing inappropriate videos to content regulators worldwide who have increased the extent to which they examine content for age and cultural appropriateness. We've previously discussed regulators' increased focus on violence , LGTBQIA+ , and cultural issues in film and television. As demonstrated by three announcements this past week, age ratings are making their way onto all types of media platforms.
British Board of Film Classification (BBFC)
On July 12th, The British Board of Film Classification (BBFC) announced they licensed 27 Video On Demand (VOD) platforms to display BBFC age ratings in the UK on a "voluntary, best practice basis." These include companies such as Netflix, Prime Video, Apple TV+, Sky Store, Rakuten TV, and other well-known UK platforms. Under their " Mobile Classification Network ," which intends to "protect young people from viewing harmful content," the BBFC announced they examined 97 UK websites and placed 33 behind adult filters.
TikTok Regulation is Imminent
On July 13th , TikTok announced in a blog post the rollout of parental controls that set "the standards for what is and is not allowed on our platform." The tools will allow parents to limit the types of content available for 13--17-year-olds based upon "thematic maturity." By providing "content scores" similar to those used "in the film industry, television, or gaming," they intend to "safeguard the teen experience." The post did not address how and who would make these determinations.
Singapore - IMDA
Also, on the 13 th , Singapore announced plans to codify into law online social media safety measures for all ages. The "Code of Practice for Online Safety" is expected to establish regulations covering violence and terrorism, dangerous viral challenges, sexual exploitation, abuse and harassment, public health threats, and racial and religious harmony. If passed, Singapore's Infocomm Media Development Authority (IDMA) will have the authority to require social media platforms to disable access to harmful content.
Age ratings in film, TV and gaming are becoming common on popular streaming and social media platforms. The challenge for content creators is how do they obtain valid ratings? Spherex has a solution that provides regulator-approved ratings for any form of video content valid in any country worldwide. Make Spherex your first stop in meeting platform and regulatory compliance rules.
Contact Spherex for a demo or additional information.
AI and ML in Media and Entertainment
Few technologies instill intense fear or promise in the public's mind than Artificial Intelligence (AI) and Machine Learning (ML). From personalized shoppers to writing press releases to robots performing physical warehouse tasks to video content analysis to "Terminator's" Skynet and video deep fakes , AI/ML can impact industry and society positively and negatively.
AI/ML applications are already affecting the Media and Entertainment (M&E) industry. Spherex greenlight ™ uses an AI/ML platform to analyze video content for regulatory and age rating compliance. Flawless.ai uses it to digitally edit content to sync language translations to facial expressions and lip-movement. Respeecher uses AI to create speech that's indistinguishable from the original speaker.
Volumes have been written about AI since the first workshop in 1956 established the field. A discussion of the systems AI/ML runs on would overwhelm most people, but understanding what makes them function is much more comprehensible and relatable.
It's Complicated
Each time we learn something new or are exposed to new information, we're processing "data." Our brain uses those data to learn how to speak, think, and interact with others. The more data we're exposed to, the more we know.
Think about describing the task of using a hammer to drive a nail. As simple as it sounds, for a computer to recognize, understand and accurately identify what's happening requires many types of "data" humans take for granted. For example:
1. Why would you use a hammer and nails?
2. Are there different kinds and sizes of hammers and nails?
3. How do you hold the hammer?
4. How do you use a nail?
5. Where do you hit the nail with the hammer?
Computers can't know any of this, so every component and step must be described in detail. "Showing" a photo of a hammer and nail is insufficient because computers can't know if you want them to recognize the image or the objects in the picture. What if a roof with shingles, people, trees, a toolbox, and the sky is visible? How is the computer supposed to differentiate between these other objects if it doesn't know what they are, their relationship to the hammer and nail, or the significance of the other things?
The point is, you have to teach the computer. This process gets complicated quickly and shows how hard it is for AI/ML systems to recognize simple objects or tasks. Consider how complex it becomes when teaching the system about the context and nuance of artifacts in a movie scene.
Those who build AI systems understand these challenges and recognize the difficulty of collecting, analyzing, and processing the mountains of data required to make their systems work.
Data, Data and More Data
No company or organization owns or maintains all the data necessary to make AI/ML systems function. It is a global and collaborative undertaking. Universities and corporations understand the challenge, so they open-source their datasets to help seed the industry and invite others to contribute to their improvement. Google , YouTube , IBM , Kaggle, and hundreds of others have contributed trillions of individual records covering hundreds of data types that comprise AI's comprehensive knowledge base.
Spherex harnessed its near decade of cultural and rating expertise and its catalog of 25M film and TV titles as a knowledge base and augmented it with public and private-source AI datasets to build its award-winning Spherex greenlight ™ content-rating solution. It is the M&E industry's first AI/ML-based system that automates rating and cultural event detection and extraction for any form of video content. This patented technology scales to enable any regulator or company to rate quantities ranging from single titles to complete catalogs of thousands of titles efficiently and correctly.
In future posts, we'll provide additional peeks into how these data are used in M&E to improve content creation, post-production, and distribution workflows. The best AI/ML applications are the ones that help you do your job while saving time and money and reducing risk.
A lot has changed since we wrote about AI in M&E in 2021. Technology and science have improved dramatically since then, and 2023 looks to be another year of significant advancement—especially with Spherex products and services.